Eddy Current Detection with Linux

- ·UKUUG Linux2004, Leeds
- ·A. R. Perry
- ·alex@pamurray.com
- ·http://candetect.sourceforge.net
- ·Linux for low cost eddy current detection
- ·Finding nails in your walls & cracks in your aircraft using a full duplex sound card and some wire

Outline – Frequently Asked Questions

- ·What is CanDetect anyway?
- ·What is Eddy Current (EC) Testing?
- ·Why use a computer sound card?
- ·What sensitivity does this achieve?
- ·How do two coils look inside walls?
- ·How does a circuit board inspect an aircraft?
- ·Which wire designs are worth building?
- •Where is the code to make measurements?
- ·What are the future plans?

What is CANDETECT?

·Corroding

· Aluminium slowly corrodes in salty and humid air

·Aircraft

· 5000 repair stations, 163000 small aircraft in the USA

Non Destructive

· Minimal damage, to permit frequent inspections

Evaluation Tools

· 340000 (a third of a million) aviation technicians in the USA

·Eddy Current Tester

· Induce electrical currents in the metal to find cracks

Approach to being low cost

- The CanDetect project uses ordinary sound cards
- It monitors the environment by magnetic induction
- The sensor can be as simple as some wire loops
- The software sends and receives magnetic signals
- The application can build as a bootable Linux floppy

What is Eddy Current Testing?

- ·Apply a changing magnetic field to a piece of metal
 - This causes electricity to invisibly flow in a loop inside
 - This so-called eddy current has to stay inside the metal
 - It cannot get across cracks or through corrosion, etc
- ·So we have a current loop, how do we know where it is?
 - Any electrical current generates a magnetic field
 - The shape of the field depends on the path of the current
 - Simply measure magnetic field of the eddy current where it conveniently extends outside the metal

Creating and detecting magnetic fields

- The magnetic field is generated by electrical current
 - There is field going in a circle around each short bit of current
 - Add up all the bits of field from all the bits of current
- ·The magnetic field is detected by electrical voltage
 - A change in the field across the wire generates a voltage
 - If the field doesn't change, there will be no voltage
 - Add up all the voltages along the wire to get the total
- ·Have to make sure that the field is always changing
 - Swap the direction of the electrical current regularly

Interesting pieces of metal

- ·The screws and power cables in your walls
 - Don't want to hang a picture by putting its nail through a cable
- The small tab on the door or window
 - The coil on the door frame is used to trigger an alarm
- The metal structure of an aircraft
 - It should stay intact from takeoff to landing
- The moving core of a LVDT (position sensor)
 - The manufacturing tool wants to know where it cuts/welds

Why does Linux help

- ·All those applications are for products
 - They have embedded computers for decision making
 - The algorithms are often changed and improved
- ·Linux is a popular embedded kernel
 - Ideal for low cost products, because no royalties
 - No hard real time support, but that's fine for this
- ·It's nice to have the same kernel on the desktop
 - Makes writing code and porting it to the target easier
 - Much larger pool of developers and consultants
- ·The code is small, easily fits on a floppy or flash chip
 - Linux kernel can be recompiled to optimize its feature set

Small and cheap Linux computers

- ·Required features of a small computer
 - Hardware multiply for processing the signals
 - Heavy math or display updates must not block audio
 - Must have full duplex sound at 16 bits
 - Other than that, almost any processor
- ·The ARM port of Linux looks good, being used in PDAs
 - Many PDA chipsets only simplex, or 8 bit duplex
 - Or documentation ambiguous/inadequate
 - Battery charge must not change electrical performance
 - That is actually a challenge, depending on electronics design

Why use a computer sound card?

- ·They can generate programmable analog waveforms
 - · On one, two, four or even six electrical outputs
 - · Most offer 1 V drive from less than 100 ohms
- ·They can also retrieve analog waveforms
 - · On one or two electrical inputs
 - · Most accept 0.1 V at much higher impedance
- ·Some of them can do both at the same time
- ·Why does every computer have something like that?
 - Maybe you can't sell a computer if it can't play games ...
 - People expect games to make lots of interesting sounds

Full Duplex – not always available

- ·More complexity to play and record simultaneously
 - Hardware could have bugs, driver might not be written right
 - Not needed to play all games, though often can be helpful
 - Problems may not impair sales a lot and might not get fixed
- ·Full duplex is popular for Internet phone calls
 - Similar situations too, such as multi-user gaming
 - But people accept noisy low quality for voice calling
 - So full duplex might work but be too poor for CanDetect
- ·Linux lets us fix the driver when there's problems
 - We can't fix hardware, but we can only choose it ...

Test and choose the best sound card

- ·Linux has drivers for many different sound chips
 - Two products may have the same chip, but different boards one boards may have less noise than the other one
 - Those differences will be invisible to the Linux driver
 - The only way to find out is to actually do the testing
- ·Tests should measure the actual analog performance
 - Make sure the sound card really does run in full duplex
 - Collect data for a minute or so and compute statistics
 - Some chips warm up when being used in full duplex
 - Such a temperature change can cause a lot of drift

Running the sound card tester

- The test may be automated, just a program to run
 - Could boot from floppy, but not all laptops have floppy drives
 - Could use a CDROM, but it is hard to change the program
 - Also, there is nowhere to store the results from the test
 - Easier to use NFS to run the program and store results
- ·Most people prefer to have a GUI when testing
 - Modify Knoppix or equivalent to add the test program
 - This means mastering and burning CDROMs until it works
- ·Network boot avoids all those disadvantages
 - Many can boot at once (no need to make lots of CDs)

LTSP – run the test program everywhere

- ·Linux Terminal Server Project has the infrastructure
 - It converts each computer you netboot into an X terminal
 - Leave all test programs and result storage on one server
- One change to client's /etc/rc.local on the LTSP server
 - Runs the test program from NFS and writes the results to file
 - Choose the filename from, for example, the client IP address
 - When test is completed, immediately reboots the computer
- ·To test, simply network boot all available computers
 - Some can use PXE, others need a floppy with EtherBoot
 - After triggering the network boot, no reason to wait around
 - All results will be ready for comparison within minutes

Linux offers hardware independence

- ·CanDetect still uses the Open Sound System (OSS)
 - All models of sound card basically look the same
 - Work in progress to transition CanDetect source to ALSA
- ·Linux treats sound interfaces on the USB bus the same
 - Use several sensors without needing additional PCI slots
 - The external bus separates the computer and sensor further because the sensor plugs into the sound card, not the computer, and the computer can be a strong source of magnetic noise!
- ·Potential to add support for expensive DAS boards
 - At my day job we use a 12 output and 12 input port board

Sound card experiences

- ·Careful choice, but not price
 - No audible hiss from microphone at full volume
 - Full duplex capable (recording during playback)
 - 16 bit operation (because 8 bits is way too few)
 - Most PCI cards are ok, but ISA are not
- ·Maestro 2E sound chip, in a notebook, works well
- ·CMI8738 from C-Media is acceptable, no issues
 - Used in the obsolete NIC, that booted from CDROM
- ·TI PCM2900, a USB audio chip, has low noise
 - But, under Linux, randomly swaps the input channels around
- ·Via82cxxx, has not yet correctly operated a probe

Problems with Linux drivers

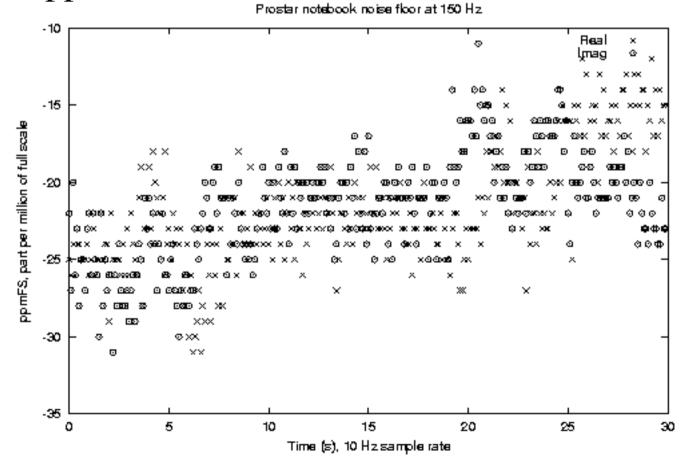
·USB audio

- This is a generic class driver, supporting many vendors
- Texas Instruments PCM2900 Random record channel swaps
- Software workaround to determine whether they're swapped

·Via82cxxx chipset

- OSS 2.4.25 and 2.6.7 Full duplex never actually plays sound
- ALSA 2.6.7 Fragments are two sizes, data not synchronous
- Software workaround is to keep measuring synchronization

What sensitivity does this achieve?


- ·Sound cards use sigma-delta conversion
 - They take millions of readings per second on each channel
 - These are digitally combined together and averaged
 - After averaging, a 16 bit integer is reported to the computer
 - Usually 32000 times per second, about every 31 microseconds
- ·Computer software can do more averaging if it wants
 - Combining four readings into one is like an extra bit
 - Doing the combination four times gives us four extra bits
 - So the data can also be 20 bit integers, 30 times per second
- ·20 bit integers can count up to a million
 - Data have resolution of one part per million (ppm)

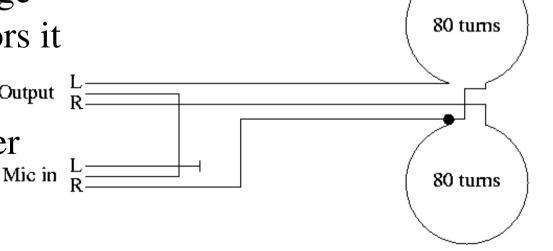
Maestro chip, 150 Hz silence

·Carrier 150 Hz for 30 sec

- Noise 0.87 ppm/rtHz, Drift 0.15 ppm/s, Offset 21.6 ppm
- See? 1ppm works.

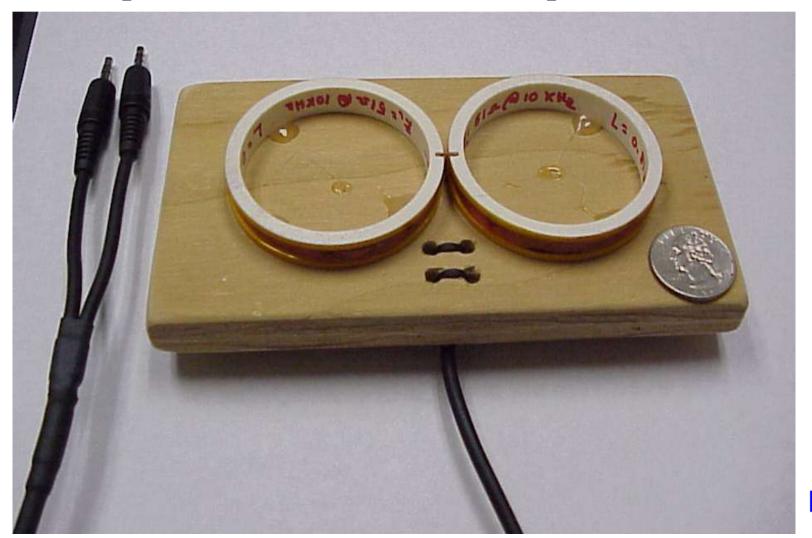
Comparison with other measurements

- < 2 digits Analog moving needle voltmeter</p>
- ·2 digits 8-bit A/D, such as in an old ISA sound card
- ·3.5 digits Most modern handheld digital voltmeters
 12-bit A/D installed in cheaper computer cards
- ·4.5 digits Std lab bench voltmeters, usually with lockin 16-bit A/D in a high quality data acq cards
- ·6 digits What we're achieving with a Linux computer can see incredibly subtle signals and changes


How do two coils look inside walls?

·Coils driven in series

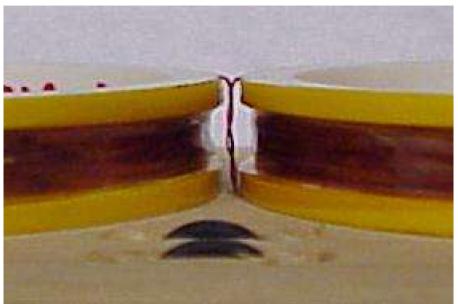
- Current provided differentially using two output channels
- Both are pushing that magnetic field into the wall
- Same current in identical coils; midpoint stays near zero

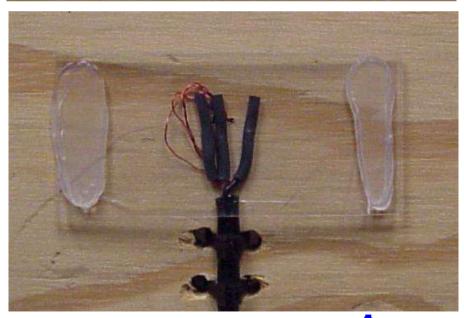

- The midpoint is the average
- One input channel monitors it
- One closer to the metal Output R
 - That coil's voltage is larger
 - Software measures that

Homemade probe – overview

- ·Two coils, glued to a piece of wood
 - · An audio patch cable, cut in half, for speaker and mic

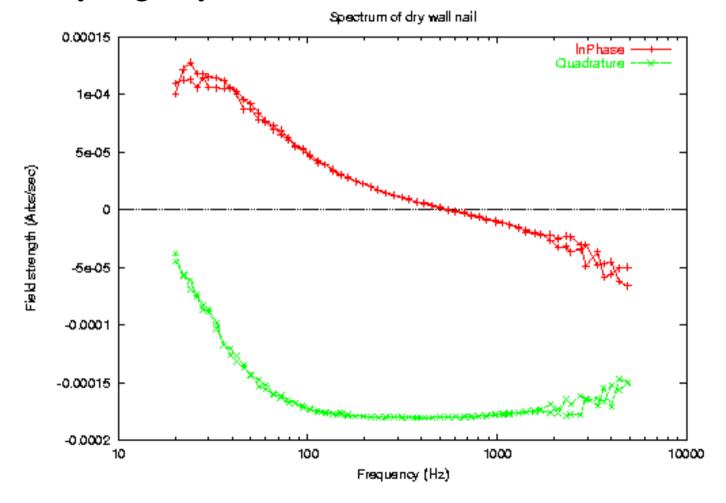
Homemade probe – detail views


The neat windings are visible


- Covered with tape for protection
- The four wire ends from the coils pass through a hole in the wood

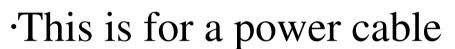
- Simply soldered together
- Heat shrink tube for insulation
- Transparent cover for protection
- Avoids damage during transport

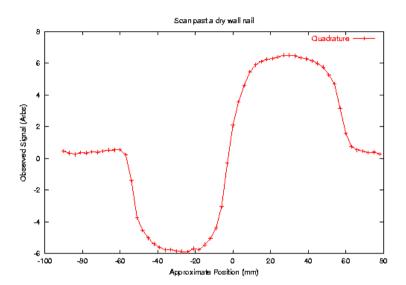
·Two tie-wraps for strain relief

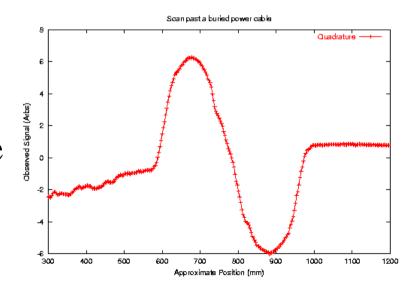


Frequency sweeps are easily scripted

- ·Dry wall nail magnetic response at many frequencies
 - Suitably big anywhere between 100 Hz and 1kHz



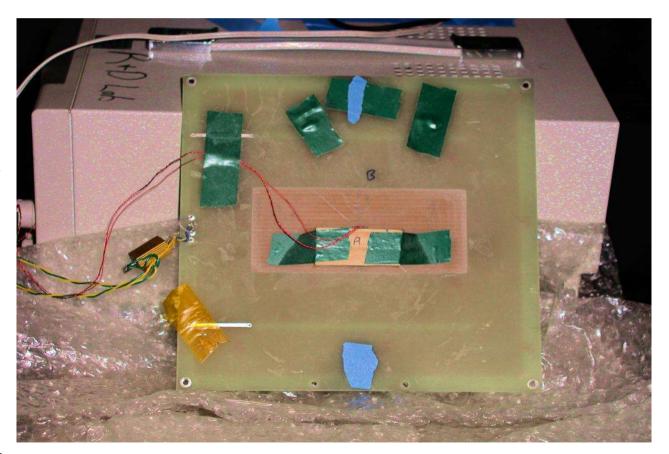

Signal from sliding probe along wall


·This is the dry wall nail

- Signal strength changes rapidly
- The nail is inside the loop, or not
- Negative for one coil
- Positive for the other

- Signal strength changes gradually
- Depends on how much wire visible
- Changes as wire goes across coil

·Easy to find midpoint ...



How does a circuit board inspect aircraft?

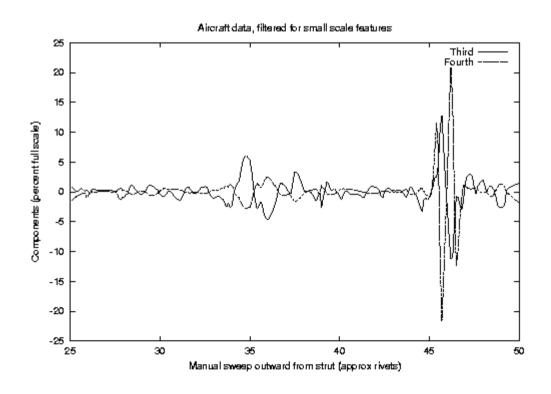
- ·Cracks tend to grow out of one rivet towards the next
 - The eddy current has to try to flow between the rivets
 - If it doesn't, the current path would not changed by a crack
 - The magnetic field has to be pointing along the rivet line
- ·A flat magnetic field can be made by two spiral patterns
 - One clockwise and one anticlockwise, next to each other
 - These are not used to receive we're only look in one place
 - A separate small coil measures the field out of the surface
- ·Coils are not very good at the low frequencies
 - Prototype uses a special MR sensor instead of the small coil

Probe design for rivet rows

- Optimized for cracks on rivets at low frequencies
 - This prototype was designed/built by Dr W.F. Avrin
- ·Cheap circuit board
 - A: the MR sensor
 - B: one of the spirals
- ·Green/yellow wires
 - Spiral current drive
- ·Pairs of red wires
 - Sensor power/signal

Cessna 172 measurement setting

Underside of C172 right wing


·Track is right to left

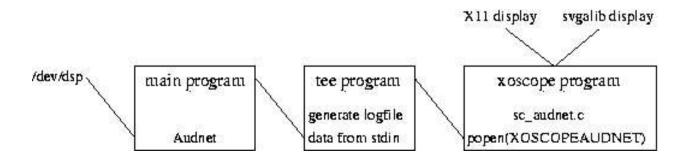
- · @25: starts right of the right hand access panel
- · @34: passes the right row of rivets
- · @46: left row of rivets
- ·Manual motion was 1 sec/rivet

Aircraft scan – High spatial freqs

- ·3: High freq at 0 deg, shows the rivets
- ·4: High freq at -45 deg, absence of crack

Simulate – is the design worth building?

- ·It is easier to simulate a new design idea than to build it
 - The design can then be adapted/improved before being built
- ·Python's numeric and scientific libraries can do magnetics
 - Compute the coupling between all coils and pieces of metal
 - Coupling data can be analyzed by "gnucap" if necessary
- ·Such coupling calculations need lots of CPU power
 - Each position and shape of the metal is a separate calculation
 - This is an ideal case to solve with a Linux-based cluster
 - MPI and similar is not needed, an OpenMosix kernel suffices


Probe designs – proving that they work

- ·Test data and qualification trials are necessary
 - Proving that a given probe is reliably detecting a given flaw
 - Before it is safe for anyone to use or rely on the results from it
 - Mistakes cost lives on any aircraft or infrastructure inspection
- ·It is usually necessary to have multiple probe designs
 - To ensure that all the different flaws are reliably detected
- ·Much more effort goes into qualification than into design
 - So it is really important to get the design right first

Where is the Code?

- ·A script connects four programs
 - · Greatly simplifies customization
- ·Main program reports all measurements
 - · First two columns are intended to be useful in real time
- ·Tee program ensures a record is kept
 - · Post-processing, such as using Octave and/or GnuPlot
- ·XOscope program provides scrolling display
 - · Allows user to optimise measurement activities

Low level library – AudNet

Operates the sound card

- · Precomputes a backlog of outgoing audio data
- · Keeps track of the list of pending sound fragments
- · Retrieves and processes recorded incoming data
- · Matches incoming data to associated outgoing data

·Manages multiple requests

- · Each has defined repetition and set of output waveforms
- · Application adds references to requests into a queue
- · Permits multiple parameters to be measured on a rota

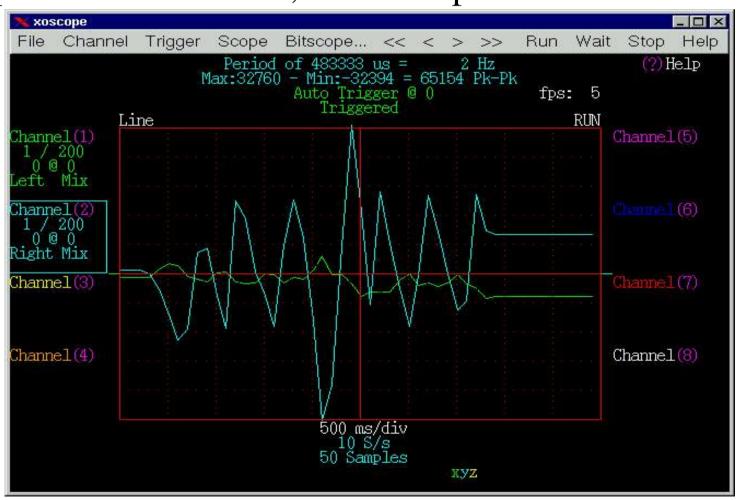
·Adaptive operation is easy

· As results become available, change future queue content

Diagnostic application – xoscope

·xoscope was originally an oscilloscope

- · Monitors signal source for a trigger condition
- · Then grabs a waveform fragment to be displayed
- · But it discards the input signal when display busy


·Probe capable of continuous movement

- · The discarding causes occasional data gaps
- · Modification necessary to the standard source code
- · Thus, CANDETECT uses a patched version of xoscope
- · Patch doesn't work against recent CVS releases though
- ·XOSCOPE only plots 10 ppm of the full scale
 - · No loss of resolution in recorded data files

Real time display, in use

- · Dynamic range of 10000 available i.e. 80 dB
- · Graphs scroll to the left, variable speed

Why is Linux needed?

·Multiplatform

- · Desktop and lab workstations for development
- · Handheld, laptop and embedded computers for production
- · All have exactly the same kernel/API, not just similar

·Multidevice

- · Many sound card drivers, all sharing a simple code API
- · Standard support for up to eight installed sound cards
- · One computer making many simultaneous measurements

·Easy development

- · Network boot, LTSP, CD boot, NFS, UML, etc
- · Remote service infrastructure and network audio
- · Use of low latency patches permits adaptive algorithms

What are the future plans?

- ·Address issues with drivers for popular sound chips
 - Need software to work with almost any modern laptop
- ·Update library to use API for ALSA instead of OSS
 - OSS is now legacy and support will degrade over time
- ·Package software for inclusion in distributions
 - Enables it to be built into subsequent live CD images
- Extend algorithms for tracking the sensor's position
 - Makes it easier for the user to know where data was taken

Conclusions

- ·Linux enables stable sub-ppm performance
 - Because its latencies never enough to pause audio stream
- ·Direct connection of probe feasible with sound card
 - Eliminating the cost and complexity of additional electronics
- ·Computer can also be used for other tasks
 - Instead of buying a dedicated NDE system, reboot an existing Windows-based workshop data retrieval station

